Minggu, 21 Juni 2015

My materi


I. Pengertian Statistika dan Data
Statistika adalah ilmu pengetahuan yang mempelajari tentang mengumpulkan, menyusun, mengolah, menganalisis, menyimpulkan, dan menyajikan data hasil penelitian. Sementara statistik adalah data hasil olahan dan analisis.
Data (bentuk jamak) adalah keterangan suatu obyek yang diteliti. Sementara datum (bentuk tunggal) adalah keterangan suatu obyek yang diteliti. Data terbagi menjadi dua, yaitu data Numerik (kuantitas) dan data Kategori (kualitas. Data numerik adalah data berupa hasil pengukuran atau penghitungan. Sementara data kategori adalah data yang bukan berupa angka. Pengumpulan data dilakukan dengan: 
  1. Mencacah/menghitung
  2. Mengukur
  3. Mengunakan tally atau turus



Populasi dan Sampel

Populasi adalah keseluruhan obyek yang memiliki karakteristik (sifat) sama yang akan diteliti.
Sampel adalah bagian dari populasi yang dapat mewakili keadaan yang benar mengenai populasi yang diteliti.



TENDENSI SENTRAL (Ukuran Pemusatan)

  1. Rata-rata hitung (Mean)
  2. Modus
  3. Median


CONTOH:
Data: 162,160, 170, 165, 167, 170, 165
Mean => Rata-rata hitung
ex:n=162+160+170+165+167+170+165:7
=1159:7=165.57


Modus =>Nilai yang sering muncul
CONTOH:
Data: 160, 162, 165165, 167, 170170
Modusnya adalah 165 dan 170


Median => Nilai tengah setelah data diurutkan
CONTOH:
Data terurut: 160, 162, 165, 165, 167, 170, 170
Mediannya adalah 165


Mean dalam tabel frekuensi

CONTOH:

Nilai5678910
Frekuensi3651754


Mean
= e(f.x):e.f= 3(5) + 6(6) + 5(7) + 17(8) + 5(9) + 4(10):3 + 6 + 5 + 17 + 5 + 4
= 15 + 36 + 35 + 136 + 45 + 40:40 = 307:40
=7,675


Ukuran Pemancaran Data Tunggal

  1. Range (jangkauan data)
  2. Quartil
  3. Jangkauan Quartil
  4. Jangkauan Interquartil
  5. Simpangan Quartil

Range (jangkauan data)
Data tertinggi - Data terendah
Quartil = Q
Pembagi data menjadi 4 bagian sama banyak Q1, Q2, Q3 Q2= Median
Jangakuan Quartil = Jangkauan Interquartil
Q3 - Q1
Simpangan Quartil
Q3 - Q1:2



Penyajian Data

  1. Menyajikan data
  2. Membaca/menafsirkan data


Penyajian data divisualisasikan melalui: 

  1. Piktogram/lambang/gambar
  2. Diagram batang
  3. Diagram garis
  4. Diagram lingkaran

II. Peluang
Peluang disebut juga probabilitas yang berarti ilmu kemungkinan. Di dalam peluang dikenal ruang sampel dan titik sampel.
Ruang sampel adalah himpunan semua hasil/kejadian yang mungkin terjadi dan dilambangkan dengan S


Peluang (P) =Banyak kejadian muncul/Banyak kejadian yang mungkin
Contoh: P=400/1200 = 1/3

Komplemen dari nilai di atas = 1200-400:1200
=800/1200 = 2/3

Frekuensi nisbi = Banyak Kejadian Muncul/Banyak percobaan

Frekuensi harapan = Banyak percobaan x Peluang

Ruang sampel dan Titik Sampel

Ruang sampel adalah himpunan semua hasil/kejadian yang mungkin terjadi dan dilambangkan dengan S.

Dalam beberapa peercobaan, ruang sampel dapat ditentukan dengan menggunakan diagram pohon maupun tabel, dan anggota-anggota ruang sampel dapat didaftar secara mudah dan teratur.


Pengetosan Dua Mata Uang


AG
A(A,A)(A,G)
G(G,A)(G,G)

Banyak titik sampel= 2x2 = 4

Pengetosan Dua Dadu


123456
1(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)
2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)
3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)
4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)
5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)
6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)

Banyak titik sampel = 6x6 = 36

Pengetosan Mata Uang dan Dadu


123456
A(A,1)(A,2)(A,3)(A,4)(A,5)(A,6)
G(G,1)(G,2)(G,3)(G,4)(G,5)(G,6)

Banyak titik sampel = 2x6 = 12

Identitas trigonometri

\sin^2 A + \cos^2 A = 1 \,
1 + \tan^2 A = \frac{1}{\cos^2 A} = \sec^2 A\,
1 + \cot^2 A = \frac{1}{\sin^2 A} = \csc^2 A \,

Penjumlahan

\sin (A + B) = \sin A \cos B + \cos A \sin B \,
\sin (A - B) = \sin A \cos B - \cos A \sin B \,
\cos (A + B) = \cos A \cos B - \sin A \sin B \,
\cos (A - B) = \cos A \cos B + \sin A \sin B \,
\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \,
\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \,
sin(u)+sin(v)=2sin(\frac {u+v}{2})cos(\frac{u-v}{2})
sin(u)-sin(v)=2cos(\frac {u+v}{2})sin(\frac{u-v}{2})
cos(u)+cos(v)=2cos(\frac {u+v}{2})cos(\frac{u-v}{2})
cos(u)-cos(v)=-2sin(\frac{u+v}{2})sin(\frac{u-v}{2})

Perkalian

2 \sin A \times \cos B = \sin (A + B) + \sin (A - B),
2 \cos A \times \sin B = \sin (A + B) - \sin (A - B),
2 \cos A \times \cos B = \cos (A + B) + \cos (A - B),
2 \sin A \times \sin B = - \cos (A + B) + \cos (A - B),

Rumus sudut rangkap dua

\sin 2A = 2 \sin A \cos A \,
\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A -1 = 1-2 \sin^2 A \,
\tan 2A = {2 \tan A \over 1 - \tan^2 A} = {2 \cot A \over \cot^2 A - 1} = {2 \over \cot A - \tan A} \,

Rumus sudut rangkap tiga

\sin 3A = 3 \sin A - 4 \sin^3 A \,
\cos 3A = 4 \cos^3 A - 3 \cos A \,

Rumus setengah sudut

\sin \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{2}} \,
\cos \frac{A}{2} = \pm \sqrt{\frac{1+\cos A}{2}} \,
\tan \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac {\sin A}{1+\cos A} = \frac {1-\cos A}{\sin A} \,

Aturan Sinus, Cosinus, dan Tangen

Aturan sinus

LabeledTriangle.svg
 \frac{a}{\sin A} \,=\, \frac{b}{\sin B} \,=\, \frac{c}{\sin C} \!

Turunan dari aturan sinus

Law of sines proof.svg
Luasan dari segitiga diatas dapat dirumuskan sebagai
L = \frac{1}{2}bc \sin A = \frac{1}{2}ac \sin B = \frac{1}{2}ab \sin C\,.
Kalikan persamaan diatas dengan 2/abc maka akan menjadi
\frac{2L}{abc} = \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}\,.

Aturan cosinus

Triangle with notations 2.svg
c^2 = a^2 + b^2 - 2ab\cos\gamma\ ,
a^2 = b^2 + c^2 - 2bc\cos\alpha\,
b^2 = a^2 + c^2 - 2ac\cos\beta\,

Aturan tangen

Triangle with notations 2.svg
\frac{a-b}{a+b} = \frac{\tan[\frac{1}{2}(\alpha-\beta)]}{\tan[\frac{1}{2}(\alpha+\beta)]}.

aljabar

Identitas trigonometri

\sin^2 A + \cos^2 A = 1 \,
1 + \tan^2 A = \frac{1}{\cos^2 A} = \sec^2 A\,
1 + \cot^2 A = \frac{1}{\sin^2 A} = \csc^2 A \,

Penjumlahan

\sin (A + B) = \sin A \cos B + \cos A \sin B \,
\sin (A - B) = \sin A \cos B - \cos A \sin B \,
\cos (A + B) = \cos A \cos B - \sin A \sin B \,
\cos (A - B) = \cos A \cos B + \sin A \sin B \,
\tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \,
\tan (A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} \,
sin(u)+sin(v)=2sin(\frac {u+v}{2})cos(\frac{u-v}{2})
sin(u)-sin(v)=2cos(\frac {u+v}{2})sin(\frac{u-v}{2})
cos(u)+cos(v)=2cos(\frac {u+v}{2})cos(\frac{u-v}{2})
cos(u)-cos(v)=-2sin(\frac{u+v}{2})sin(\frac{u-v}{2})

Perkalian

2 \sin A \times \cos B = \sin (A + B) + \sin (A - B),
2 \cos A \times \sin B = \sin (A + B) - \sin (A - B),
2 \cos A \times \cos B = \cos (A + B) + \cos (A - B),
2 \sin A \times \sin B = - \cos (A + B) + \cos (A - B),

Rumus sudut rangkap dua

\sin 2A = 2 \sin A \cos A \,
\cos 2A = \cos^2 A - \sin^2 A = 2 \cos^2 A -1 = 1-2 \sin^2 A \,
\tan 2A = {2 \tan A \over 1 - \tan^2 A} = {2 \cot A \over \cot^2 A - 1} = {2 \over \cot A - \tan A} \,

Rumus sudut rangkap tiga

\sin 3A = 3 \sin A - 4 \sin^3 A \,
\cos 3A = 4 \cos^3 A - 3 \cos A \,

Rumus setengah sudut

\sin \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{2}} \,
\cos \frac{A}{2} = \pm \sqrt{\frac{1+\cos A}{2}} \,
\tan \frac{A}{2} = \pm \sqrt{\frac{1-\cos A}{1+\cos A}} = \frac {\sin A}{1+\cos A} = \frac {1-\cos A}{\sin A} \,

Aturan Sinus, Cosinus, dan Tangen

Aturan sinus

LabeledTriangle.svg
 \frac{a}{\sin A} \,=\, \frac{b}{\sin B} \,=\, \frac{c}{\sin C} \!

Turunan dari aturan sinus

Law of sines proof.svg
Luasan dari segitiga diatas dapat dirumuskan sebagai
L = \frac{1}{2}bc \sin A = \frac{1}{2}ac \sin B = \frac{1}{2}ab \sin C\,.
Kalikan persamaan diatas dengan 2/abc maka akan menjadi
\frac{2L}{abc} = \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}\,.

Aturan cosinus

Triangle with notations 2.svg
c^2 = a^2 + b^2 - 2ab\cos\gamma\ ,
a^2 = b^2 + c^2 - 2bc\cos\alpha\,
b^2 = a^2 + c^2 - 2ac\cos\beta\,

Aturan tangen

Triangle with notations 2.svg
\frac{a-b}{a+b} = \frac{\tan[\frac{1}{2}(\alpha-\beta)]}{\tan[\frac{1}{2}(\alpha+\beta)]}.


A. UNSUR - UNSUR ALJABAR 

 1. Variabel, Konstanta, dan Faktor
Perhatikan bentuk aljabar 5x + 3y + 8x – 6y + 9. Pada bentuk aljabar tersebut, huruf x dan y disebut variabel. Variabel adalah lambang pengganti suatu bilangan yang belum diketahui nilainya dengan jelas. Variabel disebut juga peubah. Variabel biasanya dilambangkan dengan huruf kecil a, b, c, ..., z.

Adapun bilangan 9 pada bentuk aljabar di atas disebut konstanta. Konstanta adalah suku dari suatu bentuk aljabar yang berupa bilangan dan tidak memuat variabel. Jika suatu bilangan a dapat diubah menjadi a = p X q dengan a, p, q bilangan bulat, maka p dan q disebut faktor-faktor dari a.

Pada bentuk aljabar di atas, 5x dapat diuraikan sebagai 5x = 5 X x atau 5x = 1 X 5x. Jadi, faktor-faktor dari 5x adalah 1, 5, x, dan 5x. Adapun yang dimaksud koefisien adalah faktor konstanta dari suatu suku pada bentuk aljabar. Perhatikan koefisien masing-masing suku pada bentuk aljabar 5x + 3y + 8x – 6y + 9. Koefisien pada suku 5x adalah 5, pada suku 3y adalah 3, pada suku 8x adalah 8, dan pada suku –6y adalah –6.

2. Suku Sejenis dan Suku Tak Sejenis

a) Suku adalah variabel beserta koefisiennya atau konstanta pada bentuk aljabar yang dipisahkan oleh operasi jumlah atau selisih.

Suku-suku sejenis adalah suku yang memiliki variabel dan pangkat dari masing-masing variabel yang sama. Contoh: 5x dan –2x, 3a2 dan a2, y dan 4y, ...

Suku tak sejenis adalah suku yang memiliki variabel dan pangkat dari masing-masing variabel yang tidak sama. Contoh: 2x dan –3x2, –y dan –x3, 5x dan –2y, ...

b) Suku satu adalah bentuk aljabar yang tidak dihubungkan oleh operasi jumlah atau selisih. Contoh: 3x, 2a2, –4xy, ...

c) Suku dua adalah bentuk aljabar yang dihubungkan oleh satu operasi jumlah atau selisih. Contoh: 2x + 3, a2 – 4, 3x2 – 4x, ...

d) Suku tiga adalah bentuk aljabar yang dihubungkan oleh dua operasi jumlah atau selisih. Contoh: 2x2 – x + 1, 3x + y – xy, ...

Bentuk aljabar yang mempunyai lebih dari dua suku disebut suku banyak.

B. OPERASI HITUNG PADA ALJABAR

1. Penjumlahan dan Pengurangan Bentuk Aljabar
Pada bentuk aljabar, operasi penjumlahan dan pengurangan hanya dapat dilakukan pada suku-suku yang sejenis. Jumlahkan atau kurangkan koefisien pada suku-suku yang sejenis.

2. Perkalian
Perlu kalian ingat kembali bahwa pada perkalian bilangan bulat berlaku sifat distributif perkalian terhadap penjumlahan, yaitu a X (b + c) = (a X b) + (a X c) dan sifat distributif perkalian terhadap pengurangan, yaitu a X (b – c) = (a X b) – (a X c), untuk setiap bilangan bulat a, b, dan c. Sifat ini juga berlaku pada perkalian bentuk aljabar.

3. Perpangkatan
Coba kalian ingat kembali operasi perpangkatan pada bilangan bulat. Operasi perpangkatan diartikan sebagai perkalian berulang dengan bilangan yang sama. Hal ini juga berlaku pada perpangkatan bentuk aljabar. Pada perpangkatan bentuk aljabar suku dua, koefisien tiap suku ditentukan menurut segitiga Pascal. Misalkan kita akan menentukan pola koefisien pada penjabaran bentuk aljabar suku dua (a + b)n, dengan n bilangan asli.
Perhatikan uraian berikut:


Pada segitiga Pascal tersebut, bilangan yang berada di bawahnya diperoleh dari penjumlahan bilangan yang berdekatan yang berada di atasnya.

4. Pembagian
Hasil bagi dua bentuk aljabar dapat kalian peroleh dengan menentukan terlebih dahulu faktor sekutu masing-masing bentuk aljabar tersebut, kemudian melakukan pembagian pada pembilang dan penyebutnya.

5. Substitusi pada Bentuk Aljabar
Nilai suatu bentuk aljabar dapat ditentukan dengan cara menyubstitusikan sebarang bilangan pada variabel-variabel bentuk aljabar tersebut.

6. Menentukan KPK dan FPB Bentuk Aljabar
Coba kalian ingat kembali cara menentukan KPK dan FPB dari dua atau lebih bilangan bulat. Hal itu juga berlaku pada bentuk aljabar. Untuk menentukan KPK dan FPB dari bentuk aljabar dapat dilakukan dengan menyatakan bentuk-bentuk aljabar tersebut menjadi perkalian faktor-faktor primanya. Perhatikan contoh berikut:


C. PECAHAN BENTUK ALJABAR


1. Menyederhanakan Pecahan Bentuk Aljabar
Suatu pecahan bentuk aljabar dikatakan paling sederhana apabila pembilang dan penyebutnya tidak mempunyai faktor persekutuan kecuali 1, dan penyebutnya tidak sama dengan nol. Untuk menyederhanakan pecahan bentuk aljabar dapat dilakukan dengan cara membagi pembilang dan penyebut pecahan tersebut dengan FPB dari keduanya.

2. Operasi Hitung Pecahan Aljabar dengan Penyebut Suku Tunggal

a. Penjumlahan dan pengurangan
Pada bab sebelumnya, kalian telah mengetahui bahwa hasil operasi penjumlahan dan pengurangan pada pecahan diperoleh dengan cara menyamakan penyebutnya, kemudian menjumlahkan atau mengurangkan pembilangnya. Kalian pasti juga masih ingat bahwa untuk menyamakan penyebut kedua pecahan, tentukan KPK dari penyebut-penyebutnya. Dengan cara yang sama, hal itu juga berlaku pada operasi penjumlahan dan pengurangan bentuk pecahan aljabar. Perhatikan contoh berikut:


b. Perkalian dan pembagian
Perkalian pecahan aljabar tidak jauh berbeda dengan perkalian bilangan pecahan. Perhatikan contoh berikut:


c. Perpangkatan pecahan bentuk aljabar
Operasi perpangkatan merupakan perkalian berulang dengan bilangan yang sama. Hal ini juga berlaku pada perpangkatan pecahan bentuk aljabar. Perhatikan contoh berikut: